Méthode de Héron

En mathématiques, la méthode de Héron ou méthode babylonienne est une méthode efficace d'extraction de racine carrée. Elle porte le nom du mathématicien Héron d'Alexandrie mais certains calculs antérieurs semblent prouver que la méthode est plus ancienne.



Catégories :

Histoire de l'analyse - Algorithme de recherche d'un zéro d'une fonction

Page(s) en rapport avec ce sujet :

  • Le site des maths à petites doses : méthode de Héron. (source : homeomath.imingo)
  • Méthode de Héron pour extraire les racines carrées. Extraction d'une racine carrée entière d'un nombre entier. La méthode de Héron est la suivante :... (source : alain)
  • La méthode vue dans le cas de 720 par Héron d'Alexandrie se généralise sans peine ā n'importe quel nombre réel a supérieur ā 1. Dans un langage moderne, ... (source : capesinterne.free)

En mathématiques, la méthode de Héron ou méthode babylonienne est une méthode efficace d'extraction de racine carrée. Elle porte le nom du mathématicien Héron d'Alexandrie mais certains calculs antérieurs semblent prouver que la méthode est plus ancienne.

Principe

Pour déterminer la racine carrée du nombre A, on choisit un nombre x0 assez proche de √A, généralement la partie entière de √A, puis on construit une suite définie par récurrence par

x_{n+1} = \frac{x_n+ \frac{A}{x_n}}{2}

La suite ainsi obtenue est une suite décroissante à partir du second terme, convergeant vers √A.

La convergence en est quadratique : l'écart entre chaque terme et la limite √A évolue comme le carré de l'écart précédent

x_{n+1}- \sqrt{A} = (x_{n}- \sqrt{A})(x_{n}- \sqrt{A}) \frac{1}{2 x_n}

c'est-à-dire que le nombre de décimales exactes double à chaque itération.

Si le premier terme de la suite est un nombre entier ou rationnel, l'ensemble des termes successifs seront des nombres rationnels, ce qui permet d'approcher un nombre irrationnel tel que √2 par une suite de rationnels.

L'algorithme nécessite à chaque étape de faire une division, qui elle-même requiert une suite d'opérations d'autant plus longue que la précision demandée est importante (on suppose qu'on ne dispose pas de machine à calculer, sans quoi l'algorithme serait inutile). Néanmoins, l'algorithme est robuste, il supporte bien quelques approximations (et même quelques erreurs, dont l'effet sera de retarder l'obtention du résultat mais n'empéchera pas de l'obtenir), ce qui sert à se contenter de divisions (pas trop) fausses, au moins au début.

Motivation géométrique

Les rectangles ont même aire, Chaque rectangle a pour longueur la moyenne des dimensions du rectangle précédent

La présentation mathématique actuelle ne permet pas la mise en évidence du principe géométrique. Chez les mathématiciens grecs, extraire la racine carré de A c'est trouver un carré dont l'aire soit A. En prenant un rectangle de côté arbitraire X et de même aire, il est indispensable que l'autre côté ait pour longueur A/X. Mais ce rectangle n'est pas carré (en général). Pour le rendre moins rectangle, il suffit de prendre un rectangle dont la longueur est la moyenne arithmétique des deux côtés qui ont précédé soit

\frac{X+A/X}{2}

et dont l'aire reste A. En réitérant illimitément le processus, on transforme progressivement le rectangle en carré de même aire

Généralisation de la méthode

Une méthode analogue existe pour extraire la racine nième d'un nombre (voir Algorithme de calcul de la racine n-ième).

La méthode de Héron est un cas spécifique de la méthode de Newton. En effet, dans la méthode de Newton, il s'agit de trouver un zéro d'une fonction f en utilisant la récurrence suivante :

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

En prenant

f(x) = xˆ2 - A\,

la récurrence devient

x_{n+1}= x_n - \frac{x_nˆ2-A}{2x_n} = \frac{x_nˆ2+A}{2x_n} = \frac{x_n + \frac{A}{x_n} }{2}

Voir aussi



Recherche sur Amazon (livres) :



Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/M%C3%A9thode_de_H%C3%A9ron.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 10/03/2010.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu